Tenure denial, seven years later

Standard

Last month, l linked to a series of posts about my job search after tenure denial, and how I settled into my current job.  Here is the promised follow-up to put my tenure denial ordeal, now more than seven years ago, in some deeper context.

As I was getting denied tenure, nobody suggested that tenure denial was actually a blessing. Nevertheless, if anybody would have had the temerity to make such a suggestion, they’d have been right.

I don’t feel a need to get revenge on the people who orchestrated the tenure denial. But if the best revenge is living well, then I’m doing just fine in that department. I’m starting my fourth year as an Associate Professor of Biology in my hometown. Without asking, I was given the green light to go up for promotion to full Professor two years early. In the last few years, I received a university-wide research award and I was elected to a position of honor in my professional society. I feel that all aspects of my work are valued by those who matter, especially the students in my lab. I’ve managed to keep my lab adequately funded, which is no small matter nowadays. Less than a year ago, I started this blog. That’s been working out well.

The rest of my family is also faring well, professionally and personally. We are integrated into the life of our town. We have real friendships, and life is busy, fun and rewarding.

I’m high enough on life that I don’t often reflect on the events surrounding my tenure denial. There’s nothing to be gained by dedicating any synapses to the task. Three years ago, I wrote that hindsight didn’t help me understand why I was denied tenure. One might think that a few more years wouldn’t add additional hindsight. But a recent surprise event put things in perspective.

As part of work for some committees, I’ve been reading a ton of recommendation letters. One of these letters was written for someone who I know quite well, and the letter was written by my former colleague, “Bob.” (I don’t want to out the person for whom the letter was written, so I have to keep things vague.) This letter was both a revelation and a punch to the gut.

Bob was a mentor to me. He was an old hand who knew where the bodies were buried and was an experienced teacher. I knew Bob well, and I thought I understood him. When came upon Bob’s recommendation letter for this other person I know, I was stunned.

Bob primarily wrote in detail about a single and irreparable criticism, and then garnished the letter with faint praise. The two-page letter was written with care. Based on how well I know Bob, or how well I thought I knew him, I am mighty sure that it was not written with any intention of a negative recommendation. (I also happen to know the person about whom the letter was written better than Bob, and it’s also clear that the letter was off the mark.)

Being familiar with Bob’s style, if not his recommendation-writing acumen, I clearly see that he thought he was writing a strong positive letter, short of glowing, and that he was doing a good deed for the person for whom he wrote the letter. He didn’t realize in any way that he was throwing this person under the bus.

How could Bob’s judgment be so clouded? I am pretty sure he merely thought that he was providing an honest assessment to enhance the letter’s credibility. In hindsight, I see that Bob often supported others with ample constructive criticism. (For example, he once gave me a friendly piece of advice, without a dram of sarcasm, that I was making a “huge mistake” by choosing to have only one child.)

It didn’t take long for me to connect some dots.

I remembered something that my former Dean mentioned about his recommendation to the independent college committee (which oddly enough, also included the Dean as a member): the letters from my department were “not positive enough.” (I never had access to any of these letters.) Because my department, and Bob in particular, claimed to support me well, I found this puzzling.

At the time, I suspected that the Dean’s remarks reflected the lack of specific remarks and observations, as most of my colleagues skipped the required task of observing me in the classroom, despite my regular requests. Presumably nobody bothered to visit my classroom because they thought I was meeting their standards.

Then I recalled that one of the few colleagues who actually visited my classroom on a regular basis was Bob. Did his letter for me look like the one that I just read? Did he write that my teaching had some positive attributes, but I that my performance fell short of his standards for a variety of reasons?

Did Bob try to offer some carefully nuanced observations to lend credibility but, instead, inadvertently wrote a hit piece? That seems likely.

Considering the doozy of a letter that he wrote for this other person who I know well, it’s hard to imagine that he even knows how to write a supportive recommendation letter. Since he was my closest mentor and the only other person in my subfield, I’m chilled to think of what he wrote for my secret tenure file.

Meanwhile, it’s likely that my other official mentor wrote a brief, weak, letter, because he couldn’t even spare the time to review the narrative for my tenure file before I submitted it to the department. Thanks to the everlasting memory of gmail, check out what I just dug out of my mailbox:

BeHappySnippet

So, why was I denied tenure? It’s not Bob’s fault for writing a bad letter. The most parsimonious conclusion is that I just didn’t fit in.

I saw my job differently. At the time, I would have disagreed with that assessment. But now, I see how I didn’t fit. The fact that I didn’t even realize that Bob would be writing bad recommendation letters shows how badly my lens was maladjusted. If I fit in better, I would have been able to anticipate and prepare for that eventuality. I trusted the wrong people and was myopic in a number of ways, including how others saw me. I probably still am too myopic in that regard.

How was I different? I emphasized research more, but I also worked with students in a different manner. Since I’ve left, my trajectory has continued even further away from the emphasis of my old department. I’m teaching less as my research and administrative obligations grow, and my lab’s productivity is greater than could have been tolerated in my old department. My lab is full of extraordinary students that would have been sorely out of place in my old university.

I work in a public university with students whom my former colleagues would call “poor quality.” I am changing more individual lives than I ever could have before, by giving students with few options opportunities that they otherwise could not access.

It is fitting that my current position, at a university that gives second chances to underprepared students from disadvantaged backgrounds, is also a second chance for myself.

I might not have gotten tenure in my last job, but I had lots of opportunities to work with students. These interactions transcended employment; they were mutualistic and some have evolved into friendships. I look on my time there with great fondness, despite the damage that my former colleagues inflicted on me. I am gratified that I made the most in an environment where I didn’t belong.

I hope that it is obvious to those who know me and how I do my job, that my tenure denial does not make me look bad, but makes my former institution look bad. If I were to draw that conclusion at the time it happened, it would seem like, and would have been, sour grapes. Now that more time has passed, I’m inclined to believe the more generous interpretation that others have proffered.

I resisted that interpretation for a long time, because others would correctly point out that I would be the worst person to make such an assessment. I still have that bias, but I also have more information and the perspective of seven years. Is it possible that my post-hoc assessment paints a skewed picture of what happened? Of course; I can’t be objective about what happened. If I have any emotion about that time, it’s primarily relief: not just that I found another job, but that I found one where people make me feel like I belong.

I don’t stay in touch with anybody in my old department, as I snuck away as quietly as possible. Tenure denial is a rough experience, and I didn’t have it in me to maintain a connection with my department mates, even those who claimed to be supportive. We had little in common, other than a love for biology and a love for teaching, but both of those passions manifested quite differently.

I don’t have any special wisdom to offer other professors that have the misfortune of going through tenure denial. Tenure denial was the biggest favor I’ve ever received in my professional life, but I wouldn’t recommend it for anyone else. If it were not for tremendously good luck, I probably would have been writing far grimmer report.

Update: After a couple conversations I realize I should clarify how evaluation letters worked where I was denied. In the system at that time, every professor in the department is required to write an evaluation letter that goes straight into the file. These are all secret evaluations and it’s expected that the candidate is not aware of what is in the letters. If I had the option of asking people to write letters, I don’t think I ever would have asked Bob to write a letter for me, because I had several colleagues who I knew would write me great ones. The surprise about Bob was had the capacity to write such a miserably horrible letter and not even realize it. He is even worse at nuance than I expected.

Disadvantaged students come from disadvantaged universities

Standard

The future of research in the USA requires that we recruit the best possible scientists. As the country gets less and less white, we can’t afford to have fewer and fewer people seeing science as a valid career path. This should be self-evident.

When NSF and NIH throw money at the problem, the money mostly winds up in institutions that don’t have many underrepresented minority (URM) students. It’s no surprise, then, that we haven’t seen a substantial increase in the URM population of career scientists. At least, the increase is meager given the big emphasis over the years.

Most URM students who are brought into active research programs are the token few, who are already interested in research and are prepared to do it. Research institutions can advertise and recruit, and they’ll get research-focused students. So, a small number of prepared and focused URM students become a highly prized commodity among funded researchers. As the stakes get higher for URM students, then the small number of them who already want to do research become even more valuable.

To recruit new URM students into science, you have to recruit URM students into doing science. To increase the actual number of URM students who want to do science, you need to identify those who aren’t interested or ready to do science and make it happen for them. This happens some places, but it’s not the standard approach. Most programs take the easier route, to scrounge for the already-science-focused URM students instead of recruiting new students. It’s easier.

URM students disproportionately come from disadvantaged backgrounds. And disadvantaged students go to disadvantaged universities. Disadvantaged students aren’t to be found in the locations where world-class scientists are trained.  Let me emphasize this point again, because it’s huge:

Disadvantaged students enroll in disadvantaged universities. The URM students that we need to recruit are found in universities that are disconnected from big research training programs.

If you’re serious about recruiting new URM students into science, who otherwise wouldn’t be in science, then you need to build provide opportunities to students at disadvantaged universities. This is not as easy as it sounds.

Genuine recruitment requires serious relationships with students, in which they trust their professors. Students don’t need just an awesome science experience; they need to see science as a viable career path. Once my URM students want to become scientists, their biggest roadblocks are likely to be their own families. Rich experiences, personal relationships and friendships are what makes a difference.

I can tell my students that they have access to certain opportunities far more easily than non-URM students, because they’re a rare and valued commodity. I tell them they could spend a summer doing research in Svalbard, maybe go to Antarctica, or the rainforest, or live in Australia for several months doing climate change research. Or they can spend the summer working in a local NASA facility. And they’re not jumping on board or applying in droves. This is not the thing for which they went to college. What looks like amazing opportunities to me looks like a distraction, and a huge inconvenience, to many URM students. Moreover, many of them literally can’t afford to take a summer research experience with a full stipend, because they’d lose gainful employment in the process.

They’re underrepresented in the sciences for a reason. It’s not that they’re not capable of doing science, it’s that they’re not oriented towards doing it.

To make more URM scientists, you need to make more URM scientists. You’ve got to create them from non-scientists, from people who never saw themselves as scientists. These students aren’t at your research institution. They’re at the technical college. They’re at the regional state university. They’re at the community college. If you’re at a research institution, the exact students that you need to diversify the discipline are not to be found at your institution.

To truly reach out to and recruit new URM students from disadvantaged institutions, you need to directly deal with faculty members who work these students on a daily basis. Their disadvantaged institutions can’t be seen as a mere source of students, but need to be seen as partners in mentorship.

The faculty members at disadvantaged institutions don’t have the capacity for mentoring students like you find at research institutions. They spend more time in the classroom, they don’t have big labs, and they don’t have postdocs and grad students. Research institutions that want URM students from disadvantaged institutions need to be able to help create that capacity. They need to give resources to enable the faculty at URM-serving institutions provide the mentorship that is necessary to create scientists.

There are a variety of “bridges” programs that have been devised to connect up such disadvantaged institutions with research institutions with greater resources. This kind of program, in theory, is exactly what is needed to grow more URM scientists. However, in my limited experience I have found that these bridges have been constructed of poor quality and the foremen don’t pay attention to potholes on the disadvantaged sides of the bridges. When these partnerships are genuine, they work. The disadvantaged institution needs to get plenty of resources to make sure that the required mentorship can happen. This means time, supplies, and travel. And all three cost money. But the lead institution — the advantaged side of the bridge — is inclined to only fund the partner as much as absolutely necessary to keep the bridge from collapsing. And URMs students are not inclined to cross such a rickety bridge.

I hear far too often from people who are running research training programs, who have trouble getting their URM numbers high enough for themselves or their funding agencies. Either recruitment falls short, or retention, or long-term outcomes are inadequate.

For them, my prescription is simple: go to disadvantaged universities which are replete with capable science majors who may have an open disposition to research. Don’t just ask these universities to ship students to you, but build genuine relationships with the faculty and students at these universities to provide mentorship opportunities. This takes time, it takes effort, and it takes money. The good and important things, though, shouldn’t come easily.

A snapshot of the publication cycle

Standard

I was recently asked:

Q: How do you decide what project you work on?

A: I work on the thing that is most exciting at the moment. Or the one I feel most bad about.

In the early stages, the motivator is excitement, and in the end, the motivator is guilt. (If I worked in a research institution, I guess an additional motivator would be fear.)

Don’t get me wrong: I do science because it’s tremendous fun. But the last part – finessing a manuscript through the final stages – isn’t as fun as the many other pieces. How do I keep track of the production line from conception to publication, and how do I make sure that things keep rolling?

At the top center of my computer desktop lives a document entitled “manuscript progress.” I consult this file when I need to figure out what to work on, which could involve doing something myself or perhaps pestering someone else to get something done.

In this document are three categories:

  1. Manuscript completed
  2. Paper in progress
  3. In development projects

Instead of writing about the publication cycle in the abstract, I thought it might be more illustrative to explain what is in each category at this moment. (It might be perplexing, annoying or overbearing, too. I guess I’m taking that chance.) My list is just that – a list. Here, I amplify to describe how the project was placed on the treadmill and how it’s moving along, or not moving along. I won’t bore those of you with the details of ecology, myrmecology or tropical biology, and I’m not naming names. But you can get the gist.

Any “Student” is my own student – and a “Collaborator” is anybody outside my own institution with whom I’m working, including grad students in other labs. A legend to the characters is at the end.

Manuscript completed

Paper A: Just deleted from this list right now! Accepted a week ago, the page proofs just arrived today! The idea for this project started as the result of a cool and unexpected natural history observation by Student A in 2011. Collaborator A joined in with Student B to do the work on this project later that summer. I and Collab A worked on the manuscript by email, and I once took a couple days to visit Collab A at her university in late 2011 to work together on some manuscripts. After that, it was in Collab A’s hands as first author and she did a rockin’ job (DOI:10.1007/s00114-013-1109-3).

Paper B: I was brought in to work with Collab B and Collab C on a part of this smallish-scale project using my expertise on ants. I conducted this work with Student C in my lab last year and the paper is now in review in a specialized regional journal (I think).

Paper C: This manuscript is finished but not-yet-submitted work by a student of Collab D, which I joined in by doing the ant piece of the project. This manuscript requires some editing, and I owe the other authors my remarks on it. I realize that I promised remarks about three months ago, and it would take only an hour or two, so I should definitely do my part! However, based on my conversations, I’m pretty sure that I’m not holding anything up, and I’m sure they’d let me know if I was. I sure hope so, at least.

Paper D: The main paper out of Student A’s MS thesis in my lab. This paper was built with from Collab E and Collab F and Student D. Student A wrote the paper, I did some fine-tuning, and it’s been on a couple rounds of rejections already. I need to turn it around again, when I have the opportunity. There isn’t anything in the reviews that actually require a change, so I just need to get this done.

Paper E: Collab A mentored Student H in a field project in 2011 at my field site, on a project that was mostly my idea but refined by Collab A and Student H. The project worked out really well, and I worked on this manuscript the same time as Paper A. I can’t remember if it’s been rejected once or not yet submitted, but either way it’s going out soon. I imagine it’ll come to press sometime in the next year.

Manuscripts in Progress

Paper F: Student D conducted the fieldwork in the summer of 2012 on this project, which grew out of a project by student A. The data are complete, and the specific approach to writing the paper has been cooked up with Student D and myself, and now I need to do the full analysis/figures for the manuscript before turning it off to StudentD to finish. She is going away for another extended field season in a couple months, and so I don’t know if I’ll get to it by then. If I do, then we should submit the paper in months. If I don’t, it’ll be by the end of 2014, which is when Student D is applying to grad schools.

Paper G: Student B conducted fieldwork in the summer of 2012 on a project connected to a field experiment set up by Collab C. I spent the spring of 2013 in the lab finishing up the work, and I gave a talk on it this last summer. It’s a really cool set of data though I haven’t had the chance to work it up completely. I contacted Collab G to see if he had someone in his lab that wanted to join me in working on it. Instead, he volunteered himself and we suckered our pal Collab H to join us in on it. The analyses and writing should be straightforward, but we actually need to do it and we’re all committed to other things at the moment. So, now I just need to make the dropbox folder to share the files with those guys and we can take the next step. I imagine it’ll be done somewhere between months to years from now, depending on how much any one of us pushes.

Paper H: So far, this one has been just me. It was built on a set of data that my lab has accumulated over few projects and several years. It’s a unique set of data to ask a long-standing question that others haven’t had the data to approach. The results are cool, and I’m mostly done with them, and the manuscript just needs a couple more analyses to finish up the paper. I, however, have continued to be remiss in my training in newly emerged statistical software. So this manuscript is either waiting for myself to learn the software, or for a collaborator or student eager to take this on and finish up the manuscript. It could be somewhere between weeks to several years from now.

Paper I: I saw a very cool talk by someone a meeting in 2007, which was ripe to be continued into a more complete project, even though it was just a side project. After some conversations, this project evolved into a collaboration, with Student E to do fieldwork in summer 2008 and January 2009. We agreed that Collab I would be first author, Student E would be second author and I’d be last author. The project is now ABM (all but manuscript), and after communicating many times with Collab I over the years, I’m still waiting for the manuscript. A few times I indicated that I would be interested in writing up our half on our own for a lower-tier journal. It’s pretty much fallen off my radar and I don’t see when I’ll have time to write it up. Whenever I see my collaborator he admits to it as a source of guilt and I offer absolution. It remains an interesting and timely would-be paper and hopefully he’ll find the time to get to it. However, being good is better than being right, and I don’t want to hound Collab I because he’s got a lot to do and neither one of us really needs the paper. It is very cool, though, in my opinion, and it’d be nice for this 5-year old project to be shared with the world before it rots on our hard drives. He’s a rocking scholar with a string of great papers, but still, he’s in a position to benefit from being first author way more myself, so I’ll let this one sit on his tray for a while longer. This is a cool enough little story, though, that I’m not going to forget about it and the main findings will not be scooped, nor grow stale, with time.

Paper J: This is a review and meta-analysis that I have been wanting to write for a few years now, which I was going to put into a previous review, but it really will end up standing on its own. I am working with a Student F to aggregate information from a disparate literature. If the student is successful, which I think is likely, then we’ll probably be writing this paper together over the next year, even as she is away doing long-term field research in a distant land.

Paper K: At a conference in 2009, I saw a grad student present a poster with a really cool result and an interesting dataset that came from the same field station as myself. This project was built on an intensively collected set of samples from the field, and those same samples, if processed for a new kind of lab analysis, would be able to test a new question. I sent Student G across the country to the lab of this grad student (Collab J) to process these samples for analysis. We ran the results, and they were cool. To make these results more relevant, the manuscript requires a comprehensive tally of related studies. We decided that this is the task of Student G. She has gotten the bulk of it done over the course of the past year, and should be finishing in the next month or two, and then we can finish writing our share of this manuscript. Collab J has followed through on her end, but, as it’s a side project for both of us, neither of us are in a rush and the ball’s in my court at the moment. I anticipate that we’ll get done with this in a year or two, because I’ll have to analyze the results from Student G and put them into the manuscript, which will be first authored by Collab J.

Paper L: This is a project by Student I, as a follow-up to the project of Student H in paper E, conducted in the summer of 2013. The data are all collected, and a preliminary analysis has been done, and I’m waiting for Student I to turn these data into both a thesis and a manuscript.

Paper M: This is a project by Student L, building on prior projects that I conducted on my own. Fieldwork was conducted in the summer of 2012, and it is in the same place as Paper K, waiting for the student to convert it into a thesis and a manuscript.

Paper N: This was conducted in the field in summer 2013 as a collaboration between Student D and Student N. The field component was successful and now requires me to do about a month’s worth of labwork to finish up the project, as the nature of the work makes it somewhere between impractical and unfeasible to train the students to do themselves. I was hoping to do it this fall, to use these data not just for a paper but also preliminary data for a grant proposal in January, but I don’t think I’ll be able to do it until the spring 2014, which would mean the paper would get submitted in Fall 2014 at the earliest, or maybe 2015. This one will be on the frontburner because Students D and N should end up in awesome labs for grad school and having this paper in press should enhance their applications.

Paper O: This project was conducted in the field in summer 2013, and the labwork is now in the hands of Student O, who is doing it independently, as he is based out of an institution far away from my own and he has the skill set to do this. I need to continue communicating with this student to make sure that it doesn’t fall off the radar or doesn’t get done right.

Paper P: This project is waiting to get published from an older collaborative project, a large multi-PI biocomplexity endeavor at my fieldstation. I had a postdoc for one year on this project, and she published one paper from the project but as she moved on, left behind a number of cool results that I need to write up myself. I’ve been putting this off because it would rely on me also spending some serious lab time doing a lot of specimen identifications to get this integrative project done right. I’ve been putting it off for a few years, and I don’t see that changing, unless I am on a roll from the work for Paper N and just keep moving on in the lab.

Paper Q: A review and meta-analysis that came out of a conversation with Collabs K and L. I have been co-teaching field courses with Collab K a few times, and we share a lot of viewpoints about this topic that go against the incorrect prevailing wisdom, so we thought we’d do something about it. This emerged in the context of a discussion with L. I am now working with Student P to help systematically collect data for this project, which I imagine will come together over the next year or two, depending on how hard the pushing comes from myself or K or L. Again it’s a side project for all of us, so we’ll see. The worst case scenario is that we’ll all see one another again next summer and presumably pick things up from there. Having my student generating data is might keep the engine running.

Paper R: This is something I haven’t thought about in a year or so. Student A, in the course of her project, was able to collect samples and data in a structured fashion that could be used with the tools developed by Collab M and a student working with her. This project is in their hands, as well as first and lead authorship, so we’ve done our share and are just waiting to hear back. There have been some practical problem on their side, that we can’t control, and they’re working to get around it.

Paper S: While I was working with Collab N on an earlier paper in the field in 2008, a very cool natural history observation was made that could result in an even cooler scientific finding. I’ve brought in Collab O to do this part of the work, but because of some practical problems (the same as in Paper R, by pure coincidence) this is taking longer than we thought and is best fixed by bringing in the involvement of a new potential collaborator who has control over a unique required resource. I’ve been lagging on the communication required for this part of the project. After I do the proper consultation, if it works out, we can get rolling and, if it works, I’d drop everything to write it up because it would be the most awesome thing ever. But, there’s plenty to be done between now and then.

Paper T: This is a project by Student M, who is conducted a local research project on a system entirely unrelated to my own, enrolled in a degree program outside my department though I am serving as her advisor. The field and labwork was conducted in the first half of 2013 – and the potential long-shot result come up positive and really interesting! This one is, also, waiting for the student to convert the work into a thesis and manuscript. You might want to note, by the way, that I tell every Master’s student coming into my lab that I won’t sign off on their thesis until they also produce a manuscript in submittable condition.

Projects in development

These are still in the works, and are so primordial there’s little to say. A bunch of this stuff will happen in summer 2014, but a lot of it won’t, even though all of it is exciting.

Summary

I have a lot of irons in the fire, though that’s not going to keep me from collecting new data and working on new ideas. This backlog is growing to an unsustainable size, and I imagine a genuine sabbatical might help me lighten the load. I’m eligible for a sabbatical but I can’t see taking it without putting a few projects on hold that would really deny opportunities to a bunch of students. Could I have promoted one of these manuscripts from one list to the other instead of writing this post? I don’t think so, but I could have at least made a small dent.

Legend to Students and Collaborators

Student A: Former M.S. student, now entering her 2nd year training to become a D.P.T.; actively and reliably working on the manuscript to make sure it gets published

Student B: Former undergrad, now in his first year in mighty great lab and program for his Ph.D. in Ecology and Evolutionary Biology

Student C: Former undergrad, now in a M.S. program studying disease ecology from a public health standpoint, I think.

Student D: Undergrad still active in my lab

Student E: Former undergrad, now working in biology somewhere

Student F: Former undergrad, working in my lab, applying to grad school for animal behavior

Student G: Former undergrad, oriented towards grad school, wavering between something microbial genetics and microbial ecology/evolution (The only distinction is what kind of department to end up in for grad school.)

Student H: Former undergrad, now in a great M.S. program in marine science

Student I: Current M.S. student

Student L: Current M.S. student

Student M: Current M.S. student

Student N: Current undergrad, applying to Ph.D. programs to study community ecology

Student O: Just starting undergrad at a university on the other side of the country

Student P: Current M.S. student

Collab A: Started collaborating as grad student, now a postdoc in the lab of a friend/colleague

Collab B: Grad student in the lab of Collab C

Collab C: Faculty at R1 university

Collab D: Faculty at a small liberal arts college

Collab E: Faculty at a small liberal arts college

Collab F: International collaborator

Collab G: Faculty at an R1 university

Collab H: Started collaborating as postdoc, now faculty at an R1 university

Collab I: Was Ph.D. student, now faculty at a research institution

Collab J: Ph.D. student at R1 university

Collab K: Postdoc at R1 university, same institution as Collab L

Collab L: Ph.D. student who had the same doctoral PI as Collab A

Collab M: Postdoc at research institution

Collab N: Former Ph.D. student of Collab H.; postdoc at research institution

Collab O: Faculty at a teaching-centered institution similar to my own

By the way, if you’re still interested in this topic, there was also a high-quality post on the same topic on Tenure, She Wrote, using a fruit-related metaphor with some really nice fruit-related photos.

How a research institution can mentor undergrads better than an undergraduate institution

Standard

More doctoral students emerge from small liberal arts colleges than from the undergraduate populace of research institutions.

This is a point of pride held by liberal arts colleges, that market themselves as the best place to go if you want to become a scientist receiving a Ph.D. from a big-name research institution. Demographically, they’re correct.

Are small teaching schools better equipped to train undergraduate researchers better than big research institutions? I don’t think so.

In practice, liberal arts schools are far better at producing high quality researchers, but it’s not because of any inherent property of liberal arts schools. Some could argue that the curriculum itself might matter – that’s a discussion for another time – I’ll spend the rest of this post thinking about the single reason that people identify about what makes liberal arts schools a special place for budding researchers.

Here is the standard reasoning: Teaching schools provide students with the opportunity to have close professional interactions with their professors. Students in labs in small teaching institutions benefit from direct mentorship from the PI, which will more likely result in a higher quality research experience, better insights into how to do research, and greater opportunities to own their own research projects, enabling them to present at major venues and eventual publication as undergraduates.

How true is the preceding paragraph? It’s a straight-up fact that students at small teaching campuses are more likely to do more original research of their own working with their PI. And, if an undergraduate arbitrarily selects a research lab to join, then they’d probably end up getting a better experience at a teaching institution.

But, though this trend is real, research institutions have tremendous potential for training undergraduates. Without providing any additional resources, any research institution can be a top-notch training ground for undergraduates. After all, there is nothing inherent about teaching institutions that makes them better at training researchers.

There is nothing magical about having the PI as your direct mentor that will make you a better researcher and help you get into a better grad school. Looking closely at what supposedly makes a teaching institution better for training undergraduate researchers – close involvement with the PI – I see a massive handicap.

All of the literature on research mentorship says that the relationship is most successful when the mentor is just a little above the mentee in research experience. Even though the PI is a better academic expert and has mentored more, the Ph.D. student and the postdoc are in a position to be more effective as mentors.

The best mentoring arrangement is a multi-level team, in which the early undergrad works with a senior undergraduate, who then works with a Ph.D. student, who works with a postdoc as well as the PI. The PI knows everyone personally, and spends some time with the undergrads, but the graduate students are the better formal mentors. (A colleague of mine at a research institution recently tried to kick one of her own undergrad researchers out of the lab, because she didn’t recognize her. That’s not good.)

I suppose a young PI can connect more easily with students, but as we get older, then the nature of the relationship evolves. Add on a few years, and the gap between the PI and the student grows. Even if the PI is affable, and might truly understand the perspectives and thoughts of the students, it would be silly to ignore the fact that our students can’t relate to us and that we can’t relate to our students, even if we were once in their position. No matter how much time I spend with my students, now matter how similar our backgrounds are, the fact of who I am limits my ability to serve as a model. I can do all the right things in the mentoring process, but if a grad student did all of the right things, it would be even better. (And for my students from underrepresented groups, having a mentor from the same group is particularly powerful.)

I really like most of my students. I enjoy their company, and over time some have become good friends of mine. But, let’s face it, there’s a big gap. I’m older, have a kid and am married, and we don’t have that many overlapping interests. While I try hard to be transparent, I recognize that I seem like an enigma in a bunch of ways. (For example, earlier this summer one of my students was totally surprised that I use torrents to watch a couple TV shows. He just thought this was outside my realm for some reason.) I didn’t go to grad school in the middle ages, but things have changed since I’ve been there, and this is true for anybody who is at least halfway to tenure. If I try to discuss grad school with my students, I’m not nearly as credible or powerful as the same information coming from a current graduate student.

My position of authority makes me a less influential mentor.

I don’t want to overgeneralize from my experience, but I doubt that I’m alone.

You might be thinking, “Do your students really have to relate to their mentor to have an excellent research experience, and move their career to the next level?” Not necessarily. But I think it really helps. Especially for students who aren’t able to visualize themselves as capable of excelling in graduate school, a proximate model is an essential part of the mentoring process. Having seen my undergrads interact with doctoral students on a regular basis, it’s clear to me that without this kind of opportunity, that my students would missing out, big time.

Having a student know that the path has been blazed in front of them by other students, like them, matters. If students see other students throw themselves into research with great passion, they are more likely to allow themselves to get that excited. Of course, the same was true for me. But now, I’m an old bald dude with kids, and I get really excited about research, but in a different way. I can’t serve as a model for my students, even if I tried.

While grad students might not have the same authority and skill set as the PI, they can offer things that the PI can’t. This is exactly why a multi-level mentoring scheme is the way to go. The PI can choose to become involved when it is wise, and step back and focus on other things when the grad student has things under control.

Research institutions have grad students, but this doesn’t mean that they deliver great research experiences for undergraduates. While the personnel are available for a multi-level mentoring system, in many labs the system is nonfunctional because undergrads are often treated as serfs. I know many R1 labs that that are exceptional for undergraduates who work with graduate student mentors. However, I’m aware of far more labs that do not focus on making sure that undergraduates have their own research experience and are able to focus on building their own academic identity. In general, undergraduates in research institutions that receive their own project (as a piece of their mentor’s work) are the exception rather than the norm.

As for the mass production of Ph.D. students from small liberal arts colleges, I would bet that the outcome is a done deal even before the students enroll in college. The social and economic class that produces doctoral students is the same caste that is able to send students to fancy private liberal arts schools. Yes, there are scholarships and financial aid. But even if you look at small liberal arts colleges that heavily emphasize economic and ethnic diversity, they simply can’t match the diversity of the nation’s populace because, simply, most people can’t afford it. As long as the average cost of a liberal arts college is more than average cost of research universities, of course a higher proportion of doctoral students will emerge from liberal arts colleges.

How do I get my own students a multi-level mentored experience? Well, I don’t have that happen inside my lab on a day-to-day basis. I may have Master’s students around, but I usually have undergrads that are more seasoned than my grad students. That experience helps, but the way I really bring in graduate student and postdoc mentors is by having my students conduct their research in a hub of collaborative activity during the summer at a field station: La Selva Biological Station, in Costa Rica. There, my students build strong relationships with scientists from all over with different levels of experience, and these bonds typically stay tight after they leave the field station. Sometimes their projects become collaborations with grad students and postdocs at other institutions. I like that a lot, for a bunch of reasons.

If multi-level mentoring is important for the success of undergraduates, then what does this mean for you?

If you’re in a research institution: Postdocs and grad students should become genuine mentors and give undergraduates the time and resources to have their own students, and supervise them properly.  Faculty at research institutions should support their lab members, not just in the process of research but also in the process of mentorship. Don’t exploit undergraduates as trained monkeys. If you want someone to be an unthinking data-generating machine, then hire a technician. If you take an undergraduate to do “research,” then do actual research with them. Your own research agenda is easily split up into several smaller questions. Hand one of those questions to your undergraduate researcher, and learn how to mentor them. Give them the same support that you expect to receive from your own research advisor. Yeah, it’s not easy, but it will pay off for both of you in the long run.

If you’re at a teaching institution: Seek routes for multi-level mentoring in the lab. At a minimum, the undergraduates with more than two years of experience in the lab should be given the chance to actively supervise new students. Ideally, you can develop relationships with colleagues in other institutions with graduate students and postdocs. Find a way for your undergrads to become friends with doctoral students. I don’t know how to make this happen, and it varies with institutional context and geography, but from where I sit, it’s an ingredient that really promotes success. (For starters, you can bring students to smaller national meetings where they can build relationships with the students of your colleagues.)

I don’t have a big specific solution to the problem, but recognizing the fact that we as faculty are inherently flawed mentors is a start, and recognizing that the lack of graduate students at teaching institutions isn’t a strength, but a weakness, of the mentorship process.

Taking a chance on the premed

Standard

This is a repost, from a while ago, and particularly apt at the beginning of the semester as we may be recruiting new students into our labs.

What criteria do you have for bringing in premeds to do research in your lab?

There are so many reasons to keep away from premeds. For starters, premeds are more prone to:

  1. want research “experience” but don’t want to do actual research
  2. drop lab duties at the drop of a hat whenever an A- might happen
  3. walk away as soon as they think their stellar recommendation letter is a lock

Of course it’s unfair to apply these stereotypes to actual human beings. Even if they are premeds.

It’s difficult to filter unmotivated students, because I have known so many premeds that have been quick to feign interest. But you can’t do research for long if you don’t love it. The bottom line is that if I’m going to invest into a student, I want them to stick around. When you take on a premed, you’re taking a bigger chance that the investment won’t pay off in terms of data productivity. There are enough non-premeds in my midst that I can wholly avoid premeds, when properly identified. But I still accept them on occasion.

I can think of only one good reason to take on a premed. But it’s a really good reason. You can convert them. It’s tempting. After all, most premeds don’t go to med school, and their premed experience is a big mistake. You can rescue these students early on. You can show that a becoming a scientist is a real option. It gives you the opportunity to make a genuine difference in someone’s life.

Early on, I got burned plenty of times. But I had some successes, and now I have a better spidey sense when a premed is looking for a route off the path that they (or their families) have created. My main motivation is karmic. In retrospect, I still have no idea why I was a premed environmental biology major. The professor who took the chance on me is still an excellent mentor to me, and I like to think that it’s my duty to pass the favor along to her academic grandkids.

Supervising students from afar

Standard

Note: Heads up, the site is going to stay a little quiet for the next few weeks, during some vacation. Posts will continue, at 2-3 week, though I won’t be able to respond to comments or moderate. Come mid-August, things will pick up.

With students in the lab and the field during the summer, there are plenty of times when undergrads are working and their PIs are not working alongside them.

It’s typical for a PhD student to go off to do one’s own research out in some remote place, like Andean glaciers.  Undergrads, however, probably shouldn’t venture off on their own, if their project is going to be tremendously successful. And they probably don’t even work in the lab for extended periods without regular check-ins.

We can’t work alongside our students all the time. Our academic lives in the summer can’t principally consist of labwork and fieldwork. We have writing, conferences, and vacation.

As my lab is primarily built around field experiments, my students spend the summer in the field. The field, however, is several thousand miles away from home. This normally could be a problem with an undergraduate field crew, but I base the lab’s work out of an active field station. This site hosts a full community of other researchers, as well as great infrastructure that helps ensures that the resources for research are available, as well as meeting needs with respect to health and safety.

Am I concerned that the science might not work out as well as it might if I were there all of the time. A little bit, but not much. I have some rockin’ students, and I have full confidence that things are working out. Not only do my students know what they’re doing, but they also are good at diagnosing when they have doubts.

They know that I am easily contacted to deal with problems as they crop up. Except when I’m not available. I’m just returned from teaching a field course in a place that lacks cell coverage. I had wifi, but I wasn’t checking it every minute. Now that I’m heading on v

This is where I remind myself, this isn’t only my research; the students own the project as well. If they didn’t have the opportunity to make independent decisions, and have them be genuinely independent, then they wouldn’t be getting as much out of it. And, I’ve learned that when great students are making the calls things are often better than when I am in charge.

How much distance do you create/tolerate from the day-to-day work of your undergraduate research projects? What level of engagement leads to the greatest level of success?

Broader impacts ≠ reaching underrepresented groups

Standard

When the National Science Foundation introduced the required “Broader Impacts” criterion, it took more than a little bit of explaining at the outset.

Several years later, most of us understand what a “broader impact” is: In some shape or form, the funded project affects society beyond the scientific findings. There are a lot of ways to approach broader impacts. How do we go about deciding which way to fulfill the broader impacts requirement?

Earlier this year, Nadkarni and Stasch answered this question quantitatively, by evaluating the broader impacts included in nine years of funded proposals within the Ecosystem Studies program. There were some interesting finds, but there is one that I want to single out in particular.

Only 11% of the broader impacts in these proposals specifically targeted groups underrepresented in the sciences.

That’s right, only 11% of the proposals had broader impacts targeting underrepresented groups.

When I think “broader impacts,” I first, and foremost, think of providing training and mentorship opportunities to students from underrepresented groups. I also think of outreach efforts targeting underrepresented populations.

That seems to be a relatively rare priority.

It doesn’t seem to be a big stretch to say that one of the major factors imperiling the future of scientific progress in the USA is that massive sections of our population – and the ones that are growing more quickly – are not interested in, or prepared for, careers in science. If you read every other piece of policy paperwork about science education, you’ll see that the country needs to open the pathway for careers in science to Latino and African-American students. It matters, big time.

But nobody’s doing it in their broader impacts. Doesn’t that strike you as odd?

There are so many possible reasons for this phenomenon, and I don’t want to speculate ad nauseum. Here’s one possibility, though: when people think “broader impacts” they actually do first think about targeting “underrepresented groups.” However, they don’t have a simple or effective route to do so.

How do you reach students from disadvantaged and underrepresented groups? You start with students who are in disadvantaged and underrepresented institutions. Which means that the people who are getting all of these grants funded to implement broader impacts, if not at a disadvantaged institution, should start reaching out.

Are you one of those who haven’t included underrepresented groups in your broader impacts? If so, could you leave a comment about what kinds of things could smooth the path? What do you think that NSF, and we as a community, could do to help researchers at institutions with lots of NSF grants (and relatively few disadvantaged underrepresented students) reach out to underrepresented groups?

Reference:

Nalini M Nadkarni and Amy E Stasch 2013. How broad are our broader impacts? An analysis of the National Science Foundation’s Ecosystem Studies Program and the Broader Impacts requirement. Frontiers in Ecology and the Environment 11: 13–19.

A method to develop scientists from underrepresented groups: Research Recruits

Standard

The United States needs to develop more scientists from underrepresented groups. This post describes an approach I’ve developed that has helped me do this more effectively.

The United States has always been, and remains, a nation of immigrants. For a variety of complex sociological reasons, our nation’s scientists are principally being drawn from one pool of historic immigrants. Now, the demographics of the country are changing more rapidly than the culture of our scientific community.

The subset of the US population from which scientists are drawn is proportionally shrinking. If our nation is going to remain (or regain) global prominence as a research powerhouse, then we need to recruit scientists from the entire population of the country. We need to make more Latino and African-American scientists, particularly women, from these groups.

The nation needs to overcome the sociocultural divisions that inhibit students from a variety of cultural backgrounds from becoming scientists.

A few generations ago, all women were excluded from most career paths, but these restrictions also applied to the men in my family because of their heritage. My Irish and Italian great grandparents living in Brooklyn were members an underrepresented ethnic and religious minority subjected to substantial discrimination (the movie Gangs of New York puts this history into context). A hundred years ago it would have been laughable that a fresh-off-the-boat McGlynn could become respected science professor in the US. Now, my ethnic background is such a part of the mainstream that I’m now considered to be a member of the privileged class.

It’s now, literally, my job to build that kind of progress for Latinos and African Americans, ethnic groups that have a longer history in the US than my own ancestors. I work in a university that gives me the opportunity of training many of these underrepresented students, and I create avenues of opportunity for those who aspire to become research scientists.

For nearly all of my students, the concept of going to graduate school to become a scientist isn’t even on their radar. Most students are oriented towards careers as technicians in the medical, biomedical or biotechnological fields. Some are broadly interested in environmental science but more about on-the-ground conservation work rather than become a research leader in the field.

Nobody new has come to me and said, “I want to go to graduate school and become a researcher.” If I were to introduce this concept to students, most would be neutral or opposed to the idea, meet resistance from their families, and would be more oriented towards finding a 9-5 job right after graduation or seeking vocational training.

Research is not an easy sell, even though I have some students who I intuitively know right off the bat that they would both excel at, and relish, a career in scientific research. How do I make this happen? There are many books and articles written about the general approach. This post describes one specific practice that can enhance recruitment efforts.

In general, researchers are created by the placement of promising students in an immersive and amazing research experience. They also are made with the provision of proximate models (e.g., not an old white married professor with a family) to show them how possible it is for them to pursue this route.

How do you get students into immersive experiences with the right role models? How I can I, at an underfunded state university with scant research activity on campus, make this happen?

One of the problems in recruiting students from underrepresented groups into scientific careers is that most of this underrepresented population goes to high school and college in environments where it sucks to do science. These urban high-need schools are so focused on raising test scores in English and math that science is merely an afterthought at best.

It’s no wonder that our underrepresented students don’t want to become scientists. They’ve never done genuine science in school, and at our university, our labs are shabby and poorly equipped, and there are no big active research labs on campus, so they don’t have any idea what it looks like to do research.

If I want to make research scientists out of my students, I’ve got to them the heck out of Dodge.

I’ve got to get them to a place where serious research happens all over the place, surrounded by a multiethnic group of students that are one step above them in experience and aspiration. There’s lots of fun tinkering in my lab, but nothing that can inspire someone to make the switch towards a life in science.

I’m not going to bring these students to local research universities like UCLA or Caltech, or to well-endowed undergraduate campuses with great undergraduate research programs like Occidental or Pomona. That could, and does, work, but I’ve got what I think is a better plan.

I’m writing this post right now on a plane. The six seats in front of me are occupied by students from my university, and when they started college they were not planning to become scientists. I’ll wager that a few years from now, about half of them will be published authors and enrolled in a great PhD program in biology. This plane is heading for Costa Rica, and they’ll be spending either 2.5 weeks, or 2.5 months, doing research on trophic ecology in a tropical rainforest. (Their work supported by the NSF International Research Experiences for Students program, also the Louis Stokes Alliance for Broadening Minority Participation administered by NSF.)

The rainforest itself isn’t what makes the students become scientists. Instead, it’s the research environment located at the edge of this massive fragment of forest, called La Selva Biological Station. There, my students interact with undergraduates, grad students, and postdocs  from all over the US, Latin America and Europe. They hang out with people who are supremely excited about research, and they also see the social and ethnic diversity of scientists that is rare at most US universities. Many of my students speak Spanish at home, and at La Selva, they’re able to talk with research students from Latin America who are also native Spanish speakers. They see Latinos excelling at research, and it is inspiring.

What my students see at La Selva is something that I could never just explain to them: they can have a genuine future as a research scientist. If they love the research (and only some do), then this experience makes the avenue to success perfectly clear and obvious.

They know that it’s my job to clear the path for them, for the next few years, by bring them to conferences, making them published authors, and helping give them the skills they need. (You’ll be able to meet a bunch of them if you go to the Association for Tropical Biology and Conservation meeting this summer, by the way.) They know it’s their job to deliver the goods as well, by being productive members of my research lab, primarily as the engines of data creation.

I don’t necessarily need to schlep these students to the rainforest to give them that kind of immersive research environment. I think active biological field stations are the best for this kind of experience, and there are lots of these within the US. Some universities are great for this as well, especially for those whose research orientation is focused on what happens in the lab. I bring these students to La Selva because that’s my biological home where I’ve worked for almost 20 years. I work there because my undergraduate advisor brought me there, and she remains a top mentor and model for my work with students.

Bringing the right students to the rainforest became really difficult since I came to a university filled with students from ethnicities underrepresented in the sciences (in California, you can’t call Latino a “minority” after all). When I worked at schools filled with relatively wealthy students with northern European ancestry, I had no problem finding students who wanted go down and work in the rainforest for a few weeks for a few months. They could pay for it themselves, and they enjoyed the experience, though not so many of them enjoyed it enough to become scientists.

I was surprised when I got to CSU Dominguez Hills. I posted signs up all over the (dilapidated) science building which read:

SUMMER RESEARCH IN THE RAINFOREST. ALL EXPENSES PAID PLUS $4000 STIPEND. APPLY NOW!

Who wouldn’t want to do that? It turns out, nearly everybody.

I thought I’d be overwhelmed with applications. I didn’t get enough credible applications to fill my slots. The few applicants I had were hardcore premeds who I knew (from past experience) would never be won over to research, and I didn’t want to waste NSF’s money (nor my time) that way.

I eventually filled the slots, mostly with the right students, but it took a serious recruitment effort. The most frustrating part of the experience is that there were students who I knew well, who I was confident would enjoy and succeed in the summer rainforest research experience, but I couldn’t convince them to apply. It turned out that nearly all of my best potential candidates were the ones that I couldn’t convince to come along.

In hindsight, I shouldn’t have been surprised. Many of these students were closely tied to their families and had never been away from family for a week, much less two months. Also, though I could pay a full stipend, this amount couldn’t fully match the revenue they would be earning from summer employment. Third, many students were counting on taking summer school so that they could graduate in 5 or 6 years instead of 7 or 8 years (no, I’m not exaggerating. Welcome to the contemporary California State University).

I couldn’t pull a student away from home for a whole summer of paid research unless they were exceptionally untied at home and had a great degree of financial freedom, combined with an independence of vision or a particularly free spirit that would allow them to have an open mind to the future. There were students I wanted to take down for the whole summer, but I just couldn’t hook them.

So, what did I do? As the title of the post suggests, I created a new category of student researcher, which I called the “Research Recruit.”

Remember how I wrote that some of the students traveling with me joined me for just 2.5 weeks. They spend two weeks doing research at La Selva, and a few days on “cultural experiences” such as the beach, cloud forest, volcano expeditions, hot springs, museums and zip-lining before going back home. They don’t receive a stipend, but they do get all their travel expenses covered plus a little per diem. Nothing has to come out of their own pockets.

It’s not that hard to convince most students to leave for the rainforest for 2.5 weeks. They can take that much time off their jobs with enough advance warning, and even if they have overprotective family, they can escape and reassure them with video chats from abroad. Students can get someone to watch their pets for that long, if not the whole summer. While not many people apply as research recruits on their own initiative, when we seek out students who we think are a good fit and ask them to apply, then we get a large and high quality applicant pool.

The Research Recruits don’t run their own projects like the long-term students. They pitch in as research technicians on the projects run by the other students. They also are encouraged to tag along with other researchers on station, which gives them the chance to meet a variety of grad students from the U.S. and also gives them exposure to a variety of biological and research system. Exceptional ones might be invited to stay for the whole summer, if there is adequate funding and mentorship.

By hosting a short-term cohort of Research Recruits, I am able to give students a taste of field biology and a thrilling research community. We are able to entice a number of recruits to apply to, and plan for, a full summer of research abroad in the following summer. Some research recruits don’t return to the rainforest for a full summer, as they discovered that they are not field biologists, but they have emerged from the experience excited about research and some have wound up as researchers in other lab-oriented disciplines. Others have gone into careers in teaching, and their tangible research experience has enhanced their classroom teaching.

It is hard work to make a scientist out of a person whose background precludes scientific research as a genuine career option. It is a highly personalized process, and it takes building genuine personal relationships. It also takes multiple years. Not all of my “research recruits” become scientists, but some of them do. These students who wind up in grad school never would have committed to a full summer of research without having an initial taste of research. If I gave up on them because they were wary of a summer of dedicated research, then it’s likely that they never would have been turned onto scientific research as a career option.

Once our Recruits go home, then they can prepare for the next summer. They can talk to their families, arrange for someone to watch their dog, don’t mind quitting their job and get excited about the projects that they can do. The level of commitment required to leave home for the summer, for the purpose of an intangible and vague experience, is a high bar for underrepresented students. The Research Recruit experience lets students know what they would be doing for the whole summer, and gets talented students to be motivated to make the personal commitment.

Is an exceptional summer experience enough to turn a student into a lifelong scientist? It can be. The hard part is getting students to envision themselves taking part in an experience for one summer. If you bring Research Recruits into your program, you lessen the initial level of commitment and then you can identify those who will succeed in long-term experiences.

Underrepresented students are going to college at underrepresented universities, the campuses that are not actively participating in the research community. To diversify the sciences, you need to recruit students from these campuses. To do this, you’ve got to go through us – the faculty who work with these students on a day to day basis.

To bring students from these institutions into the fold, you can’t just offer amazing experiences and hope that the right students sign up. You’ve got to court them, and convince them that research is a viable avenue. You’ve got to build personal relationships.

You can’t just expect the best students to commit to full summer research experiences. Research ability and motivation may be independent from the ability to envision research as a career path. I wish every program that is trying to recruit students from ethnic minorities included a Research Recruit option, which would bring in not only more students, but also the best students who otherwise would not see research as an option in their future.

We have a high conversion rate from our Research Recruit program, and after doing this for four years, our challenge is that we have too many qualified students looking for full-summer slots. That’s not a bad position to be in, and it also helps us argue for greater levels funding for our programs.

If you don’t have enough talented students from underrepresented groups applying, consider inviting them for just two weeks. Build your research community from the ground up. There are so many amazing students from underrepresented groups at non-research universities that can be excellent scientists. Creating funded opportunities is only the start, you’ve got to court them. I humbly suggest that creating a short-term Research Recruit program is one successful tactic that is absent from most programs.

How to run a summer undergraduate research lab

Standard

That title should indicate a question rather than a set of instructions.

How do you run a research lab in the summertime?

We’re approaching that time when campuses get really quiet, except for us scientists who are working year-round.

Many of us have undergrads funded (through a variety of internal and external funds) to work in our labs in the summer. What does it take to make sure that get work gets done on schedule, in high volume, and with the proper level of quality control? What can you do to make sure that the students have the best research experience? Are those two things wholly compatible?

What policies and procedures do you have, if any? Do you use a timecard with fidelity? How often do students report on their work formally, and how much time do you actually work alongside your students? How much is expected of the students in terms of hours per week, research product, or both? Do you have students write up much their work in the summer, save all it for the fall, or do they just hand over data to you and you write it up?

Please share your favorite practices, and ones you know that don’t work, in the comments. We’ve got lots to learn from one another.

I imagine that marital and reproductive status affect how you run the lab over the summer, too.

I tell my undergrads that I have three priorities for summer research:

  1. Everybody is safe
  2. Everybody has a fun time
  3. Everybody is collecting genuine data that is designed to be part of a publication

I explain that all three are mutually compatible. We are doing real science, not a make-work research “experience.”

That said, I have almost no experience with personally mentoring undergraduates in the lab throughout the summer.  Students working with me in the summer head to a large rainforest field station with me for a few weeks. And then I leave them behind to continue their projects, typically in the hands of capable peers or mentors. As my wife has described my field site, both the atmosphere and physical environment resembles the hybrid of a college campus and a summer camp. I’ll be sharing plenty more about this while I’m on site, just a few weeks away. (Gaaah! Not ready!)

If there’s a meltdown in my absence, or if a hole pops up in my schedule, then I might return back to the forest before the summer ends. But otherwise, much of my mentorship is conducted via skype and email. Which is no small task. I don’t supervise my students doing their field projects as closely as I could, but I have found that giving students with great judgment latitude to make decisions works out really well. I don’t allow students with less-than-great judgment to work independently in the rainforest. I’ve gotten pretty good at picking out the right students in advance, with the help of my colleagues, but I also intentionally occasionally take chances on students who I think might be deserving of a the opportunity. I’ve gotten burned occasionally, including last summer when I had to send a student home after just a few days.

I don’t think I could or would want to spend my summer in my lab. It’s glorious outside, and I want to travel, often in the guise of science, and I also want to spend lots of time with my family. So, when I’m not at my field station, I’m often working at home. There’s no shortage of writing projects that need my attention. If I were in the lab with students all summer, when would I be able to write?

Mentorship = Training?

Standard

When I was an undergraduate in the early ’90s, I didn’t do much research. But when the students in my midst were doing research, they weren’t being “mentored.” They were getting “research training” or doing “undergraduate research.”

Nowadays, we “mentor.”

Is there any difference in what we are doing now compared to what people used to do, or is it just an evolution of nomenclature?

Here’s exhibit A. On Dynamic Ecology and elsewhere, they were having fun comparing historical trends with Google’s n-grams. I couldn’t resist cooking my own up:

Google n-gram of the use of the terms "undergraduate research," "research training" and "mentorship" in books

Google n-gram of the use of the terms “undergraduate research,” “research training” and “mentorship” in books over time

Oddly enough, the rise and fall of “undergraduate research” corresponds well with the use of that dated term to refer to female college students, “coed”:

ugrescoed

The way I read this, there was a steady climb in “research training” after World War II. On the other hand, the popularity of the term “undergraduate research” tracks disco on the airwaves, or the push for the Equal Rights Amendment. “Mentorship,” though, has steadily climbed since the 1980s, following the wake of “undergraduate research.” I won’t tell the people at CUR if you don’t tell them.

I think what we are doing, on a day to day basis in our labs with our students, hasn’t substantially changed ever since the term “undergraduate research” was popularized.

The term “mentorship” is broadly applied to many circumstances. It’s not just used for undergraduate research. (In 30 Rock, Jack Donaghy was Liz Lemon’s “mentor.”). However, the rise of the term in general does seem to have displaced “undergraduate research” off the radar.

I have to admit that I’m partial to the notion that “mentorship” is different in philosophy than “training.” In the context of training Master K-12 science teachers to help new teachers being inducted into the profession, I’ve gotten some exposure to training in a formalized program that shows people how to mentor, called “Cognitive Coaching.” I bet the Cognitive Coaching people will disagree with me, but this is mostly about learning how to mentor, by learning how to truly listen well and coach someone through a learning process or challenge. I was skeptical of the whole concept at first, but let me tell you that every person I know who has gone through the training is very positive about it and says it was helpful, and these are people who don’t like to have their time wasted.

I can train someone. Mentorship is more difficult, because it takes more patience. Mentorship requires that you help someone figure it out for themselves when they can. Training is just showing someone how to do it and make sure they copy well.

I aspire to the practice of mentorship. I’m not a patient person, but I try. Let’s hope the change in language reflects a change in practice. However, I wouldn’t recommend that the Council for Undergraduate Research change its name to feature the role of Undergraduate Mentorship more prominently.

A formal model for undergraduate authorship

Standard

The standard guidelines for authorship rarely address undergraduate-specific issues. Earlier, there was some interesting discussion about what it takes to make an undergraduate a first author, and the costs and benefits of working to make this happen. Since then, I’ve been made aware of a detailed and thoughtful article specifically addressing this topic, by Burks and Chumchal at Southwestern University and Texas Christian University.

If you’re thinking about investing the time into mentoring an undergrad through the long slog of the writing process, this fuel for thought is worth your own time to read. There is a great list of recommended strategies, which we only touched on in the comments before. Here’s a copy. The paper includes this decision tree:

a decision tree to figure out how an undergrad is an author

From: Burks, R.L. and M.M. Chumchal. 2009. To Co-Author or not to co-Author: How to write, publish, and negotiate issues of authorship with undergraduate research students. Science Signaling 2: tr3.

This article was sent to me by a reader who didn’t want himself to be identified. Thanks, anonymous correspondent!

This paper is spot on and provides a very useful way to structure a project even before you start. There are a few tacit assumptions in here, though, of which I’m not wholly convinced.

  • Publication with undergraduates makes it harder to get into a higher tier journal (potentially because of time constraints)
  • Lack of institutional support may alter the costs and benefits of involving students in research
  • The motivation for supporting student authorship will vary with tenure/promotion status

The paper also addresses whether or not students earn any authorship at all, and if so, what position. This part made me feel better, because it looks like my current practice mostly follows the recommendations. However, the authors suggest that if a project couldn’t have been completed without a student, then that students merits authorship, at least somewhere in the paper. Almost nothing in my lab gets done without students. What is the role of an undergraduate student who performs the role of a thoughtful technician? This student didn’t conceive the project, but they spent 200 person-hours working on it. They aren’t in a position to analyze or write (or, at least, I’m not in a position to mentor them on it). They collected nearly all the data but didn’t do much else. Are they coauthors? This is murky. The student has a good deal of ownership and the project would not exist without the student, but you did everything but collect data. I prefer to involve students more deeply, but sometimes this doesn’t happen.

This is still a dilemma for me. One of the pragmatic aspects that enter the equation is the professional trajectory of the student. Would the paper matter for them? This shouldn’t be a part of authorship criteria, but it’s hard to ignore.

Training vs. productivity. What’s your currency?

Standard

In a big lab, research gets done through the training of grad students and postdocs. The lab simultaneously fulfills its research mission and meets the “broader effect” agenda of developing the scientific workforce. Training and productivity are mutually compatible.

Granted, some PIs – often those that have the most effective training programs – do lots of independent work and their research happens separate from their students. Regardless, the training of students and the production of research aren’t in conflict.

Theoretically, this statement applies to labs in teaching schools. However, it’s not necessarily the case in practice.

I suspect science faculty – at least senior faculty at teaching schools – can be sorted into three pools:

  • Those who think that their main research responsibility is to mentor student researchers and provide them with high quality experiences to further their careers. The publication of research is an important and useful product of the research experience.
  • Those who think that their main research responsibility is to conduct and publish research and be a part of the scientific community. The mentorship of students and their future success as scientists is an important and useful product of the research experience.
  • Those who think that research distracts from quality teaching. If you can find the time for it, that’s okay as long as it doesn’t harm the students.

Is this an overgeneralization? It might be.

In an attempt to pin a theory on this (overgeneralized) concept, perhaps these perspectives form the axes of a triangular continuum (in ecology, like CSR theory or Holdrige life zones), “productivity,” “training” and “emphasis on the classroom.”

When new faculty start their jobs, maybe they start near the middle of the continuum space, or wherever the departmental culture requires for tenure. As they gain experience and a string of successes and failures of various kinds, they may gravitate to one of the corners. (I should add that an emphasis on training, research, or the classroom doesn’t necessarily mean that someone is better at that particular thing. For example, someone who says that student training is paramount might not necessarily serve their students well.)

Another theoretical framework could be taken from optimal foraging theory. Faculty members can have different currencies for their decisions. For example, when a bird is foraging, is it trying to collect the highest energy food, or trying to collect the most nutrients? Or is it trying to maximize net energy gain (and thus balance food collection with calories spent foraging)? Or is it trying to minimize predation risk? These are all different possible currencies that an  individual could select when making decisions.

Faculty members have different currencies when pursuing their research agenda. Some will seek to maximize grant money or publications, others will seek to increase the quality of student training, or the number of students heading to graduate school. Some will be seeking to maximize scientific discovery, and others are trying to have the most fun possible. Some might be trying to maximize their free time to go play with their pets.

With respect to how research happens in the lab, I think there are two common currencies that undergraduate faculty mentors choose: One is Research Productivity (a composite of publication quantity and quality) and the other is Student Training (a composite of the number of trained students and their entry into top labs in grad school).

The choice of this currency isn’t made because people love productivity or student outcomes per se. Instead, they may love the exhilaration of research and all that it entails (in my case, ants in the rainforest and all their amazing little quirks), and they may love working with their students on a day to day basis and watching them grow and succeed (which cam be spectacular in a way that words fail to describe).

To put it a different way: do you want to do research for the sake of doing the research and all that it entails, or are you doing it as an avenue for training students to be an effective educator and improve student outcomes? These two priorities, of course, are mutually compatible. However, when making decisions on a day to day basis, what is your currency?

Both perspectives, in my view, are valid and useful for the missions of most schools. I posit that a department might work best when it has faculty with diversity of currencies, with mutual respect of each others’ differing choices. A successful department might not require maximal diversity, but needs at least adequate representation of the major functional roles. When you don’t have that functional diversity in a department, things don’t work as well.

To illustrate this principle, here’s a story, slightly modified to protect the innocent: At a field station, I once shared a bottle of rum with a colleague. (This has happened plenty, but only once did it lead to this particular story from at least 10 years ago.) He was mostly a research-for-research’s sake kind of guy, and he was working in a small college in which others focused on research as a vehicle for student training. He would have to have been a top-notch scholar on his campus, I imagine. He told me how he had trouble getting promoted to full professor, because his department didn’t approve of how he conducted his research program. He eventually received promotion, accompanied with a reprimand. Apparently, he needed to involve more students in his research. The odd thing is that he actually did include students in his research, quite a bit.

This probably seems like an odd story if you haven’t taught in a teaching institution. Similar toxic situations can evolve when newly hired research-active faculty may raise the bar on unproductive faculty, or in a department focused heavily on productivity, and some scientists take care to mentor a small number of students with lots of attention, at the cost of productivity. (And, of course, at research institutions, departments focused on productivity don’t appreciate faculty who want to focus more heavily on classroom teaching.)

Behavioral ecologists have found that animals may switch currencies, depending on the environmental context.

In a low research environment such as my campus, resources cannot be acquired without a moderate to high level of productivity. Frankly, since my campus doesn’t provide me with the resources (time, space, funds) to do any student research training whatsoever, it would be very difficult to accomplish this task unless it’s built on a backbone of productivity. Moreover, successes in student training are not specifically valued or rewarded by the institution (even if it is an explicitly stated priority), whereas bringing in grants is given high priority. So, I don’t have the option to focus primarily on student training, because if I did that too much, I would not have resources to support my students. Though I’m at an undergraduate institution, I need to run my lab like at a big university if I am to get anything done, because we don’t have any other way to support our students.

My own currency, then, is productivity, though this does seem to maximize student training, at least in my current low-resource environment. In an environment where faculty are provided resources to mentor student researchers (time for mentorship, modest supply funds, and a stipend or salary for student research), then a currency switch might make sense. This might explain why small liberal arts schools are known for placing so many students into top graduate programs, not just in relative frequency but in absolute numbers. There, an emphasis on a high quality research experience might serve the students best.

Perhaps the best environment for a budding undergraduate researcher is to be mentored by a graduate student in a big research lab. You will have access to fancy resources and that important pedigree, plus quality time with someone more experienced than you, and lots of feedback and an opportunity to learn. (So far, two of my former undergraduate mentees have moved on to faculty positions at universities, both of whom coauthored a piece of my dissertation. That’s a stronger record than with I’ve had since becoming a professor whose job it has been to mentor undergraduates.)

Perhaps NSF and NIH should include salary for an undergraduate mentee for every graduate student on a project? That might be the best, and a very cheap, way to make more scientists.

Undergraduate first authorship?

Standard

When undergraduates are conducting their own research projects in your lab, should first authorship be one of the main goals of mentorship?

This isn’t common, but it happens. (I’ve met several such undergrads at conferences.) If you work in a research institution, the event would be fun thing to lightly celebrate.

At teaching schools, this would be ultimate evidence of a top-notch operation. It probably would look better for your undergrad to be first author than to be sole author yourself, or better than having several undergrads as coauthors. It could potentially seal the deal on the scholarship expectations for tenure or promotion, especially in an institution that only expects one or a few papers before tenure. Off campus it wouldn’t look like much, but on campus it would be a big frickin’ deal.

Here is the rub: It takes much more of the mentor’s time for the student to be first author than if the mentor just wrote the paper on one’s own. It requires frequent individual meetings, revision of draft after draft, lots of advising about literature review, reading and placing the work in context. Even if the mentor does the final analyses and results and makes the figures (which wouldn’t preclude first authorship in my view), the rest of it is probably a long slog, even if the student is talented and motivated. Some manuscripts are long slogs even without undergrads doing the writing. It could be a joyful process, but simultaneously time-intensive.

I’ve never known an undergraduate to expect first authorship unless the mentor is the one who generates, and reiterates, the expectation. I regularly express this expectation among my students who clearly own their projects. I create a specific set of tiered expectations, first with lots of reading, then generating a set of specific questions for the manuscript and an introduction leading towards it.  Then, well, then… umm…. I’ve never gotten any further than that.

I admittedly set the initial bar high. It takes persistence for anybody to write their first manuscript, especially as an undergrad. I don’t want to have the process drag on for months and years only for a student to drop the ball. So, if the student is up to the first task with gusto, then we proceed. This limits an unnecessary investment.

I would love it if one of my students wrote their own paper and became first author. I’d be over the moon. (I think it might actually be happening this semester for the first time, though I’ve said this before.) Some students are too busy and consistently fail to meet deadlines, and various deadline extensions. Others change their priorities. Others have moved on to grad school and their PIs think they should leave the manuscript behind. Some students might decide that it’s ready, even though it’s not, then get frustrated and give up.

Most of my students don’t even get past the first filter. They stall at the first stack of reprints and come unprepared to discuss them. Clearly, if student authorship is my main goal, I could provide even more care and feeding to students, with more and smaller tiers of expectations. I could be doing the job better.

My first priority when supervising research is to make sure that the work gets finished and published. Because my lab relies on students to generate most of the data, we can’t afford to have students spinning their wheels on projects that result in half-completed projects or data that can’t be used. I’m the only one in the operation who is equipped to ship a manuscript out the door on schedule. I’m also equipped to mentor students through the process of doing it themselves, but this would take more resources and limit productivity.

I want my students to benefit the most they possibly can from being in my lab. In my view, that benefit isn’t the the opportunity to write their own paper. It’s being an actual co-author on an actual paper that comes to press. I could carefully mentor, cajole, coddle and push, and get students to write papers once in a long while. Or I could write a bunch more myself. Without much conscious thought into the process, I’ve fallen into the latter approach.

Perhaps it’s crass to say that I favor creating a productive lab over careful individual mentorship of students leading their own projects to publication. At some liberal arts schools, that’s heresy. However, what I really want to offer students is the opportunity of being in a successful lab, and the fact that I’m writing most of the manuscripts lets this happen. If I didn’t write up student projects, then productivity would take a bit hit. Nobody has suggested that this approach is exploitative of students, and given standard criteria that people apply to authorship, I’m relatively generous with students.

Ultimately, I think my approach offers a much greater benefit to students, and to a greater number of students as well. If my success is measured by the professional trajectories of my students, then I’ve been doing just fine.

Research labs, even in teaching institutions, need outside validation. Outside the microcosm of my campus, nobody gives a hoot about student outcomes. Even NSF cares much more about pubs than the quality of student training (but that’s another post of its own).

Have you had an undergrad write their own paper? Have you been tempted to slap their name as first author even if they haven’t? How do you measure your success as a mentor? Does tenure change the approach? How does departmental climate matter?